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The Laser Intensity Modulation Method (LIMM) is widely used for the determination of the
spatial distribution of polarization in polar ceramics and polymers, and space charge in
non-polar polymers. The analysis of experimental data requires a solution of a Fredholm
integral equation of the 1st kind. This is an ill-posed problem that has multiple and very
different solutions. One of the more frequently used methods of solution is based upon
Tikhonov regularization. A new method, the Polynomial Regularization Method (PRM), was
developed for solving the LIMM equation with an 8th degree polynomial using smoothing to
achieve a stable and optimal solution. An algorithm based upon the L-curve method (LCM) was
used for the prediction of the best regularization parameter. LIMM data were simulated for an
arbitrary polarization distribution and were analyzed using PRM and LCM. The calculated
distribution function was in good agreement with the simulated polarization distribution.
Experimental polarization distributions in a poorly poled sample of polyvinylidene fluoride
(PVDF) and in a LiNbO3 bimorph, and space charge in polyethylene were analyzed. The new
techniques were applied to the analysis of 3-dimensional polarization distributions.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
1.1. LIMM experiment
LIMM was first suggested by Lang and Das-Gupta in
1981 [1] and described in detail in 1986 [2]. A review
of the current implementation was presented in 2004 [3].
The experimental technique is as follows. LIMM samples
are prepared as thin plates or sheets with their flat surfaces
normal to the polar axis. These surfaces are coated with
very thin opaque electrodes. The sample may be either
freely suspended or attached to a grounded metal plate by
an electrically conductive paste or cement. The surface
of the sample is exposed to a laser beam whose intensity
is modulated sinusoidally by means of an acoustooptic
modulator or a built-in modulator in the laser. The energy
of the laser beam is absorbed at the electrode and heat dif-
fuses into the sample as temperature waves. The depth of
penetration of the waves is greater for low modulation fre-
quencies and less for high ones. This produces a spatially
non-uniform time-varying temperature distribution that

interacts with the unknown polarization or space charge
distribution to produce a pyroelectric current. The real
and the imaginary components of the current generated
at each of 50 to 100 different frequencies are amplified
and a lock-in amplifier is used to determine the amplitude
and phase relative to that of the modulated intensity of the
laser beam.

1.2. Analysis of LIMM data
The relative polarization distribution, β(z), is found from
a solution of the LIMM equation [2, 4, 5]:

I (ω) = A

L

∫ z2

z1

β(z)
∂T (z, ω)

∂t
dz (1)

where

β(z) = αP P(z) − (αx − αε)εε0 E(z)
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T AB L E I Nomenclature

Parameter Symbol Units

A Laser beam cross-section m2

I Current A
E Electric field Vm−1

k Thermal conductivity Wm−1 K−1

L Thickness m
p Pyroelectric coefficient Cm−2 K−1

P Polarization Cm−2

PS Spontaneous polarization Cm−2

r Regularization parameter Dimensionless
T Temperature K
t Time s
z Spatial coordinate m
z1, z2 Spatial coordinates of upper

(irradiated) and lower surfaces of
sample

m

α Thermal diffusivity m2 s−1

αP Temperature dependence of
polarization

K−1

αx Thermal expansion coefficient K−1

αε Temperature dependence of
permittivity

K−1

β(z) Polarization distribution function
(Equation 1)

Cm−2 K−1

γ Scale factor in Equation 2 Dimensionless
ε Relative permittivity Dimensionless
ε0 Permittivity of vacuum Fm−1

η Roughness residual in Equation 6 C2 m−7 K−2

λ Coefficient in Equation 2 Dimensionless
ρ Data fit residual in Equation 5 A2

σ Space charge Cm−3

ω Radial frequency rad s−1

Nomenclature is given in Table I. The term ∂T/∂t is calcu-
lated from the one-dimensional heat conduction equation
using boundary conditions appropriate for either a freely-
suspended sample or a sample mounted on a substrate
[3]. It was shown by a finite-element solution that the use
of a one-dimensional analysis instead of the true three-
dimensional one introduces negligible error. Equation 1
is then solved for β(z) using experimental measurements
of I(ω). If the experimental sample is a polar ceramic or
polymer, it is assumed that the polarization is locally com-
pensated by space charge and only P(z) is determined. If
the sample is nonpolar, then P(z) = 0 and the electric field
E(z) is found. From this, the space charge distribution can
be determined. There is no way to separate polarization
and space charge if both are present. It should be noted
that I(ω) contains experimental errors. Computer roundoff
will effectively add errors, even in the case of computer
simulated data. Equation 1 is a Fredholm integral equa-
tion of the first kind and is an ill-conditioned problem
with a large (possibly infinite) number of very different
solutions. An illustration of the multiplicity of solutions
was given by Phillips [6]. A term such as sin(kz) can be
added to β(z). Provided that k is sufficiently large, the
integration will reduce this added factor to less than the
experimental errors.

A large number of methods have been proposed for the
solution of Equation 1 [3]. The most successful of the
methods are various forms of the regularization method
[7–11] and the scale transformation [4, 5]. The regulariza-
tion method utilizes the requirement that the polarization
distribution must be smooth. By specifying the degree of
smoothing, extreme minima and/or maxima are excluded
but moderate ones are permitted. However, its usage re-
quires complex computer programs. The scale transfor-
mation method is very easy to implement. It is less accu-
rate than regularization and it does not allow the determi-
nation of the polarization in regions closer to the sample
electrode than the thermal diffusion length at the highest
measured frequency. Recently, Lang [3] proposed a sim-
plified regularization method called the Polynomial Reg-
ularization Method (PRM). It is implemented using the
computer software program, Mathematica R© [12]. Analy-
sis of experimental data requires the selection of an ap-
propriate regularization parameter. A technique called the
L-curve Method (LCM) is used for that purpose. PRM
and LCM are described in the following section.

2. Polynomial regularization method (PRM)
and L-curve Method (LCM)

2.1. Polynomial regularization method
and simulated data

PRM is implemented by assuming that β(z) can be repre-
sented by an eighth-degree polynomial:

β(z) = λ0 + λ1γ (z) + λ2γ (z)2 + λ3γ (z)3 + · · ·
(2)

where

γ (z) = Log(z) − Log(z1)

Log(z2) − Log(z1)

Because LIMM is most useful in determining distributions
near the sample surface [13], the distribution is based on
a normalized logarithmic scale. Polynomials of degrees
greater than eight have been found to give very inaccurate
results. Lower degree polynomials gave the general shape
of the distributions but did not correspond to them in
detail. Eighth-degree polynomials were the most satisfac-
tory. The coefficients λj, must be determined. Equation 2
is substituted into Equation 1 and the integral is evaluated
numerically to give the real and imaginary parts of I(ω)calc

as a function of the λs. A linear regression (least-squares)
solution can be obtained by minimizing the function:

∑
i

[I (ωi )exp − I (ωi )calc]2 (3)

with respect to the λs which are then inserted into Equa-
tion 2. This yields one possible polarization distribution
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but, most likely, an incorrect one. In the regularization
technique, the following function is minimized with re-
spect to the λs:

∑
i

[I (ωi )exp − I (ωi )calc]2 + r2
∫ z2

z1

(
d2β(z)

dz2

)2

dz (4)

The regularization parameter, r, smoothes the computed
polarization distribution. If r = 0, the conventional linear
regression solution is found. This solution will have a
number of large maxima and minima because of the ill-
posed nature of the problem. If r is too large, all of the
detail is removed from the computed distribution.

Simulated experimental data will be used to illustrate
the PRM. The sample is assumed to be a 25.4-µm thick
film of polyvinylidene fluoride (PVDF) with 100-nm thick
aluminum electrodes. The lower surface of the sample is
in good thermal contact with a thick metallic substrate.
A typical frequency range over which data are measured
extends from 10 Hz to 100 kHz. Based on the Frequency
Range Function proposed by Lang [3], the polarization
can be found in the region between 0.01 µm and 10 µm
from the laser-irradiated electrode. A polarization distri-
bution, P(z), is assumed, as shown in Fig. 1. This distribu-

Figure 1 Simulated polarization distribution in 25.4-µm thick PVDF.

Figure 2 LIMM current versus frequency data calculated from data in
Fig. 1 using Equation (1). Random errors added.

tion is a purely arbitrary function and does not resemble
a physically realistic distribution. Then simulated exper-
imental data, I(ω)exp, are calculated by substituting the
distribution into Equation 1. In order that the simulated
data will more closely resemble true data, a Gaussian
distribution of error is added to each point (standard devi-
ation of 5% of the range of the real and imaginary parts,
resp.). The resulting simulated real and imaginary values
of current I(ω)exp as functions of frequency are shown in
Fig. 2. Because the simulated distribution is known, it is
possible to examine the closeness of the solution to the
true value by varying r. In Fig. 3, the sum of the squares of
the differences between I(ω)exp and I(ω)calc (error of fit)
is graphed as a function of r. The minimum error of fit is
found for r = 0.000033, referred to as the “optimal” value.
Calculated distributions for r = 0, a very large value of r
(0.001) and the optimal value of r (0.000033) are shown in
Fig. 4. All three calculated distributions are correct math-
ematical solutions of Equation 1 but only the distribution
corresponding to the optimal value of r reproduces the
true distribution.

Figure 3 Error of fit versus regularization parameter. Error of fit is sum
of squares of differences between true distribution (Fig. 1) and calculated
distribution.

Figure 4 Polarization distributions. True value and those corresponding to
no regularization, optimal regularization and oversmoothing.
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2.2. L-curve method (LCM)
and experimental data

If measured experimental data are analyzed, the optimal
value of r cannot be found as illustrated above because
the true polarization distribution is unknown. Therefore, a
method of selecting a good value of the regularization pa-
rameter is required. Several techniques for determination
of the regularization parameter are described by Sandner
et al. [11]. Mellinger [14] has presented an example of
the unbiased iterative method. Hansen and O’Leary [15]
suggested using the L-curve method for other types of ill-
conditioned problems. A range of values of r is selected
and two parameters are computed for each value of r. One
is the data fit residual:

ρ(r ) =
∑
ωi

[I (ωi )exp − I (ωi )calc]2 (5)

and the second is the roughness residual:

η(r ) =
∫ z2

z1

(
d2β(z)

dz2

)2

dz (6)

The data fit residual is a function of the difference be-
tween the actual experimental data and values computed
for a specific level of r. The roughness residual is a mea-
sure of the lack of smoothness in the computed polar-
ization distributions. If log(ρ) is plotted versus log(η), a
curve with an L-shape results. The L-curve for the data in
the example above is shown in Fig. 5. The corner corre-
sponds to the point where the calculated distribution β(z)
changes from domination by large differences between
experimental and calculated values to domination by over
smoothing. The value of r corresponding to the corner is
a good measure of the regularization parameter. It can be
found most easily by finding the maximum of the curva-
ture of the function in Fig. 5. The curvature is given by

Figure 5 L-curve for simulated data.

Figure 6 Polarization distributions. True and those corresponding to opti-
mal and L-curve regularization parameters.

the following formula [15]

ρ̂ ′η̂′′ − ρ̂ ′′η̂′
[
(ρ̂ ′)2 + (η̂′)2

]3/2 (7)

where

ρ̂ = log(ρ) and η̂ = log(η)

The ′ and ′′ symbols indicate differentiation and double
differentiation with respect to r. In order to evaluate Equa-
tion 7, the values of ρ(r) and η(r) are interpolated with
low-order polynomials and then differentiated with re-
spect to r. The maximum value of curvature in this exam-
ple corresponds to r = 0.000030. Fig. 6 shows the true
polarization distribution, the one corresponding to the op-
timal value of r and the one found using the L-curve.
The “optimal” and the “L-curve” fits are both in excellent
agreement with the true curve.

3. Experimental studies
Experimental studies on three different materials are pre-
sented here.

3.1. Polyvinylidene fluoride
LIMM data were measured on a 25.4-µm thick sample
of polyvinylidene fluoride (PVDF). The sample had been
weakly poled and then stored for a number of years. The
experimental data are shown in Fig. 7. The regulariza-
tion parameter at the point of maximum curvature in the
L-curve plot (Fig. 8) was 0.000235. Although it is dif-
ficult to determine the point of maximum curvature by
eye, it is easily found by use of Equation 7. The cal-
culated polarization distribution shown in Fig. 9 is very
non-uniform as a consequence of the poling and aging
conditions.
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Figure 7 Real and imaginary LIMM data for a poorly-poled sample of
PVDF.

Figure 8 L-curve for PVDF data.

Figure 9 Polarization distribution of PVDF.

3.2. Domain inversion in lithium niobate
Periodic domain inversion has been used to produce wave
guides for second harmonic generation in lithium niobate
and lithium tantalate [16]. A 0.503-mm thick z-cut plate
of LiNbO3 was thermally treated in order to partially in-
vert the orientation of the domains [17]. Domain inversion
occurred at the +c-surface and extended approximately
halfway through the thickness of the sample. LIMM data
were measured in order to determine the resulting polar-
ization distribution [18]. The experimental data for the
+c and −c surfaces are shown in Fig. 10. The regular-

Figure 10 LIMM data for bimorph sample of LiNbO3. Data measured for
laser impingement on front and rear surfaces.

Figure 11 Polarization distribution of bimorph sample of LiNbO3.

ization parameters at the points of maximum curvature
in the two L-curve plots were 0.0000591 and 0.0000485,
respectively. The domain inversion is clearly shown by
the calculated polarization distribution (Fig. 11).

3.3. Space charge in cross-linked
polyethylene

Samples of 100-µm thick cross-linked polyethylene
(XLPE) were poled with a dc electric field of 50 kV mm−1

at room temperature for a period of 18 h [19]. XLPE is
non-polar although the presence of polar impurities re-
sulted in some polarization which decayed very rapidly.
However, the major effect was the deposition of space
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charge. The LIMM data for measurements on the upper
and lower surfaces of the sample are shown in Figs 12
and 13. The thermal expansion coefficient αx used in the
calculations was 200×10−6 K−1 and αε was assumed to
equal zero. The corresponding regularization parameter
was 0.0000235 for each of the surfaces. The electric field
distribution in the sample is shown in Fig. 14. The space
charge distribution was calculated from the electric field

Figure 12 LIMM data for laser impingement on upper surface of cross-
linked polyethylene.

Figure 13 LIMM data for laser impingement on lower surface of cross-
linked polyethylene.

Figure 14 Electric field distribution in cross-linked polyethylene.

Figure 15 Space charge distribution in cross-linked polyethylene.

distribution by use of Gauss’s law:

σ (z) = ε0ε
d E

dz
(8)

where ε = 2.3. The space charge distribution is shown in
Fig. 15. Negative space charge was found in regions very
close to the electrodes. Because of its limited resolution
near sample surfaces, the scale transformation technique
for analyzing LIMM data [4] did not reveal this negative
charge.

Figure 16 Polarization distributions at various depths in PVDF poled with
a T-shaped electrode.
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4. Three-dimensional mapping of polarization
profiles

The techniques of PRM and LCM were applied to the
analysis of three-dimensional polarization data [20]. An
11-µm thick sample of electroded PVDF was affixed to a
metallic substrate. It was poled with a dc electric field of
100 MVm−1 using a T-shaped electrode. A thermal pulse
method of data acquisition rather than LIMM was used.
The second-harmonic beam of a Q-switched Nd:YAG
laser was focused to a spot size with a radius of 200 µm
(at the 1/e point) and was scanned over the sample in a 36
by 36 point-raster pattern. The pulse duration was about 5
ns and 30 to 50 pulses were averaged at each point of the
scan. The scan points were 200 µm apart covering a 7×7-
mm area. A current amplifier was used and the current
versus time data were recorded with a digital storage os-
cilloscope. The recorded data were Fourier-transformed
to yield current versus frequency data. This resulted in
conventional LIMM data with a frequency range from 50
Hz to 1 MHz. Thr PRM-LCM analysis was carried out on
the 1296 data points. Fig. 16 shows the polarization dis-
tributions at various depths from the upper surface of the
PVDF. The results were noisy at the shallowest depth of
0.3 µm but very clearly showed the T-shaped distribution
at greater depths. At a depth of 10 µm, the polarization
began to fade into the background. Future studies will use
a more strongly focused laser beam.

5. Conclusions
A new method for the solution of the Fredholm integral
equation of LIMM is proposed. It utilizes a regularization
approach to find an 8th degree polynomial approximation
to the polarization distribution. The value of the regular-
ization parameter is found using the L-curve method. Both
simulated and experimental LIMM data were analyzed.
Very good agreement was found between the calculated
and the true distribution of the simulated data. The exper-
imental measurements revealed useful information con-

cerning polarization or space charge. The technique has
now been extended to the analysis of three-dimensional
data. The calculations were implemented using Mathe-
matica [12]. Copies of the computer files developed in
this study are available from the author.
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